Биологические и цитологические основы

Формирование хромосомной теории

В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения.

Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г.

американским генетиком Т. Морганом, который в последующие годы (1911—1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

Генетика пола

Пол, как и любой другой признак организма, наследственно детерминирован. Важнейшая роль в генетической детерминации пола и в поддержании закономерного соотношения полов принадлежит хромосомному аппарату.

У раздельнополых организмов (животных и двудомных растении) соотношение полов обычно составляет 1:1, то есть мужские и женские особи встречаются одинаково часто.

Это соотношение совпадает с расщеплением в анализирующем скрещивании, когда одна из скрещиваемых форм является гетерозиготной (Аа), а другая — гомозиготной по рецессивным аллелям (аа).

В потомстве в этом случае наблюдается расщепление в отношении 1Аа:1аа. Если пол наследуется по такому же принципу, то вполне логично было бы предположить, что один пол должен быть гомозиготным, а другой — гетерозиготным.

При изучении хромосомных наборов самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются.

Так, у самки дрозофилы имеются две палочковидные хромосомы, а у самца — одна такая же палочковидная, а вторая, парная первой, — изогнутая. Такие хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми хромосомами.

Те из них, которые являются парными у одного из полов, называют X-хромосомами (например, у дрозофилы и млекопитающих) или Z-хромосомами (например, у птиц).

Непарная половая хромосома, имеющаяся у особей только одного пола, была названа У-хромосомой (у дрозофилы и млекопитающих) или W-хромосомой (у птиц).

Хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Следовательно, у дрозофилы особи обоих полов имеют по шесть одинаковых аутосом плюс две половые хромосомы (ХХ у самок и XY у самцов).

Пол, имеющий различные половые хромосомы (X и У), образует гаметы двух типов (половина с X-хромосомой и половина с У-хромосомой), то есть, является гетерогаметным, а пол, содержащий в каждой клетке одинаковые половые хромосомы (X-хромосомы), — гомогаметным.

Открытие половых хромосом и установление их роли в определении пола послужило важным доводом в пользу того, что хромосомы определяют признаки организма.

Определение пола

От чего же зависит рождение мужских и женских особей? Рассмотрим это на примере определения пола у дрозофилы. В ходе гаметогенеза у самок образуется один тип гамет, содержащий гаплоидный набор аутосом и одну X-хромосому.

Самцы образуют два типа гамет, половина из которых содержит три аутосомы и одну X-хромосому (ЗА Х), а половина — три аутосомы и одну У-хромосому (ЗА У).

При оплодотворении яйцеклеток (ЗА Х) сперматозоидами с X-хромосомами будут формироваться самки (6А ХХ), а от слияния яйцеклеток со сперматозоидами, несущими У-хромосому, — самцы (6A XY).

Поскольку число мужских гамет с X — и У-хромосомами одинаково, то и количество самцов и самок тоже одинаково. В данном случае пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

Сходный способ определения пола (XY-тип) присущ всем млекопитающим, в том числе и человеку, клетки которого содержат 44 аутосомы и две X-хромосомы у женщин либо XY-хромосомы у мужчин.

Таким образом, XY-тип определения пола, или тип дрозофилы и человека, — Самый распространенный способ определения пола, характерный для большинства позвоночных и некоторых беспозвоночных.

У всех птиц, большинства бабочек и некоторых пресмыкающихся самцы являются гомогаметным полом, а самки —- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола;

Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую — ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др.

Выяснилось, что у дрозофилы особи с набором ХО — самцы, а с набором ХХУ — самки (у человека — наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки).

(Особи со всеми этими хромосомными аберрациями у дрозофилы стерильны). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом.

Понятие о генетической карте

Т. Морган и его сотрудники К. Бриджес, А. Г. Стертевант и Г. Дж. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение.

В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике.

Так, создание штаммов микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии, которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в здравоохранении и медицине. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса.

Основные положения хромосомной теории наследственности

    Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах. Гены расположены в хромосоме в линейной последовательности. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола). Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами). Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Цитологические основы наследственности кратко

3.5. Закономерности наследственности, их цитологические основы.

Моно– и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов.

Законы Т. Моргана. Хромосомная теория наследственности. Генетика пола. Наследование признаков, сцепленных с полом. Генотип как целостная система.

Развитие знаний о генотипе. Геном человека.

Краткое содержание любого произведения или рассказа – это ваш настоящий шанс вспомнить все его самые яркие эпизоды, имена и фамилии героев, описание их судеб и жизненных перипетий.

Вы можете полностью окунуться в сложные повороты жизненных путей главных героев, различные истории и драматические моменты, и для этого вовсе не обязательно перечитывать полностью всё произведение – краткое содержание, это ваш выход!

Цитологические основы наследственности — раздел Сельское хозяйство, — 2006 год — «Цитологические Основы Наследственности».

Выполнил: Студент 2 Курса 3 Группы.

«Цитологические основы наследственности». Выполнил: студент 2 курса 3 группы факультета ветеринарной медицины и биотехнологии в животноводстве.

Спец. «Зоотехния» Выполнил :Власов. В. Проверил: Крутов Е. К. Иваново 2006 Содержание 1.

Митоз характеризует деление всякой клетки с любым составом хромосом, он осуществляет передачу всей полноты генетической информации от клетки к клетке.

Кроме того, во время мейоза происходит перекрест, ведущий к обмену участками гомологичных хромосом. Относительное положение мейоза в жизненном цикле организмов может быть разным в зависимости от их положения в эволюционной лестнице жизни.

Основные закономерности наследственности установил выдающийся чешский ученый Грегор Мендель. Свои исследования Г. Мендель начал с моногибридного скрещивания, при котором родительские особи отличаются по состоянию одного признака.

Вместе горох можно искусственно перекрестно опылить, что делает возможным гибридизацию и получения гетерозиготных (гибридных) форм.

Медицинская генетика изучает закономерности наследственности и изменчивости под углом зрения патологии (болезни), а именно — причины возникновения наследственных болезней, характер их наследования в семьях, распространение в популяциях людей, специфические процессы на клеточном и молекулярном уровнях.

Генетические факторы влияют на причину многих не наследственных в обычном смысле слова болезней, накладывая отпечаток на возможность возникновения, течение и исход болезни.

Микротрубочки – нитевидные структуры, состоящие из белка тубулина. Они имеют вид длинных полых цилиндров, стенки которых состоят из белков – тубулинов.

Микротрубочки пронизывают всю цитоплазму клетки, формируя ее цитоскелет, обусловливают циклоз (струйчатое движение цитоплазмы), внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала. На белок тубулин разрушительно действует алкалоид колхицин.

Злокачественные новообразования, наряду с сепсисом, ожоговой болез­нью, политравмой и полиорганной недостаточностью, относят к патологичес­ким состояниям, при которых показано применение так называемого фарма­кологического питания.

Основная задача фармакологического питания — это введение в организм некоторых важных для организма веществ в повышенных дозах, существенно превышающих суточную потребность.

Цитологические основы полного сцепленного наследования

«Наследование сцеплённое с полом» — Найдите соответствия: Решение задачи. Наследование, сцепленное с полом».

Организационный момент Актуализация знаний учащихся. Половые хромосомы Аутосомы. Тема урока: «Генетика пола. F. 1. Пара различающихся хромосом, неодинаковых у самца и самки.

Цесаревич Алексей и царица Александра Федоровна.

«Закон Менделя по биологии» — Грегор Иоганн Мендель.

С 1856 по 1863 годы Мендель проводил опыты на горохе в монастырском саду.

Цитологические основы размножения и наследственности человека

Процессы развития половых клеток и оплодотворения у человека принципиально ничем не отличаются от таковых у млекопитающих и полностью сходны с обезьянами.

В норме у мужчины сперматогенез протекает непрерывно. В функционирующем семеннике имеются сперматогонии двух типов: одни после последнего деления растут, превращаясь в сперматоциты I порядка, другие продолжают делиться, оставаясь резервными сперматогониями.

Http://dic. academic. ru/dic. nsf/ruwiki/1183297

Http://vigor24.ru/citologicheskie-osnovy-nasledstvennosti-kratko-48275/

(1)Гаметогамия с копуляц (с оплодотвор):1) изогамия — тип полового процесса, при котором сливающееся ся гаметы одинаковы.

3) оогамия — тип полового процесса, при кот сливающиеся гаметы резко различаются (почти все растения и животные).

(2)Партеногенез. Девствен размнож, при котором яйцеклетки развиваются без оплодотвор. различ: а)Облигатный, при кот яйца способны только к партеногенетическому развитию, иФакультативный, при котором яйца могут развив и посредством парт-еза, и в результ оплодотворения.

Б) Диплоидный. Как правило, размножение посредством партен-за чередуется с обоеполым (циклическим партеногенозом). При незавершен мейозе развитие начинается с диплоидных ооцитов 1-ого порядка (летние покол тлей).

В) Естественный иИскусственный партеногенез.

Своеобразн форма партен-за — Педогенез. У личинок развиваются неоплодотворенные яйца, дающие начало новому поколению (двукрыл насеком сем-ва галлиц, ряд морских ветвистоусых рачков).

К партен-зу относятся также некоторые особые формы размнож. ПриГиногенезе сперматозоид только актив яйцеклетку, не принимая участия в дальнейшем развит зародыша.

Ядро сперматозоида разрушается, развивается самка (некоторые виды нематод, костист рыб, земноводных). ПриАндрогенезе в развитии зародыша участвует только принесен в яйцеклетку ядро сперматозоида, женское ядро погибает (некоторые виды наездников, встреч у ряда растений — кукуруза, табак).

1.Почкование. Хар для кишечнополостных (гидра, обелия — морской гидроидный полип, коралловые полипы), асцидий, губок.

2.Фрагментация — разделение особи на 2 или несколько частей, каждая из которых растет и достраивает новый организм (ресничные, кольчатые черви).

3.Стробиляция. Наблюдается у таких жив, как асцидий, лен­точные черви. Происходит повторные неполные поперечные деления, дающие возрастающее число дочерних особей, и возникает стробила.

4.Полиэмбриония. размножение на стадии эмбрио­нального развит — зигота или зародыш делится на несколько час­тей, развивающихся в самостоятельные организмы.

развит нов ор­ганизм происходит из соматических клеток. Хар-но для бро­неносцев (у них всегда рожд детеныши одного пола), встреч у человек (рожден однояйцевых, или монозиготных, близне­цов).

5.бесполое размножение. Происходит путемСпорообразования(перед образованием спор происходит мейоз) — размножение с помощью спор, которые образ у них в специальных органах —Спорангиях.

Часто споры покрыты твёрд оболочкой, защи­щающей клетки от неблагоприятного внешнего воздействия. В благо­приятных условиях каждая из спор дает одну особь.

6.Вегетативное размножение — осуществляется путем обособления различных частей тела и развития из них целого организма.

А) Частям таллома (таллом — тело низших растений, недифференци­рованное на ткани и органы). Хар-но для водорослей и лишайников. Изидии и соредии — специализированные участки слоевищ лишайник, служащие для вегетатив размнож.

— стеблевыми черенками (ива, тополь смородина);

— листовыми черенкам (сансевьера — щучий хвост, бегония).

В)Корневыми черенками (малина).

Понравилась статья? Поделиться с друзьями:
Медицинский взгляд на еду
Adblock
detector