Н с стволинская цитология

Ранние этапы развития цитологии

Любая наука начинает активно развиваться, когда появляются методы, с помощью которых можно изучать необходимые объекты. Цитология есть наука о клетках – мельчайших живых структурах, имеющих обмен веществ и способных к размножению.

Название «цитология» происходит от греческого слова kytos, что означает ячейка, клетка. У большинства организмов размеры клеток так малы, что их невозможно различить невооруженным глазом.

Поэтому цитология начала развиваться с появлением и усовершенствованием световой микроскопии. Первые клетки наблюдал английский естествоиспытатель Роберт Гук в 1665 г.

под микроскопом собственной конструкции. Это были клетки коры пробкового дуба. Первая книга, которая дает начало цитологии как науке о форме, структуре, функции и эволюции клеток, вышла в свет в 1884 г. Ее автор – Ж.-Б. Карнуа.

Он назвал свою книгу «Биология клетки». Таким образом, начиная с первого описания клетки понадобилось больше 200 лет, прежде чем разрозненные знания о ней сложились в систему и дали начало новой науке – цитологии.

Современная цитология – это наука, которая изучает особенности строения, деления и жизнедеятельности клеток, присущие всем клеткам организма. Ученые также выделяют частную цитологию – эта наука изучает клетки конкретных тканей и органов в связи с уникальностью их функций.

Первые шаги в развитии новой науки сопровождались усовершенствованием светового микроскопа и развитием новых методов микротехники – приготовления окрашенных препаратов, на которых под микроскопом можно увидеть не только границы клетки, но и структуры внутри нее: ядро, живую протоплазму, хлоропласты, а также синцитий – структуру из делящихся клеток, соединенных цитоплазматическими мостиками, и изучить процессы деления клеток.

Дав своей книге название «Биология клетки», Ж.-Б. Карнуа опередил время. Все чаще в современной биологии с конца XX в. употребляется именно такое название науки цитологии, которая является описательной морфологической наукой.

Биология клетки – это современная экспериментальная наука, которая изучает физиологию клетки на молекулярном уровне, регуляцию ее работы, адаптацию к изменяющимся условиям окружающей среды.

   1665 г. – Р. Гук описал небольшие структуры в срезах коры пробкового дуба и назвал их клетками.

   1674 г. – А. Левенгук открыл одноклеточные организмы, клеточный состав крови. Спустя 9 лет – увидел бактерии.

   1833 г. – Р. Броун описал ядра в клетках орхидей.

   1838 г. – Т. Шванн сформулировал клеточную теорию, используя обобщения М. Шлейдена о клеточном строении растений.

   1846–1852 г. – Вводится термин «протоплазма» для обозначения тела живой клетки.

1855–1858 г. – Р. Вирхов установил, что клетки не могут образовываться из бесклеточного вещества, всякая клетка происходит только из клетки путем деления.

   1876–1879 г. – Э. Страсбургером описана последовательность событий при делении растительных клеток.

   1876 г. – Е. ван Бенеден открыл клеточный центр.

1879 г. – В. Флеминг ввел термины «митоз» и «хроматин», описал поведение хромосом в митозе животной клетки, хотя сам термин «хромосома» был предложен В. Вальдейером позднее, в 1888 г.

1875–1884 г. – Открыто, что при оплодотворении сливаются ядра половых клеток как у растений, так и у животных (Э. Страсбургер, Е. ван Бенеден, О. Гертвиг).

   1882 г. – В. Флеминг открыл мейоз в клетках животных.

   1888 г. – Э. Страсбургер описал мейоз в клетках растений.

   1894 г. – Открытие биобластов Р. Альтманом, в 1897 г. эти структуры были названы митохондриями.

   1898 г. – Открыт аппарат Гольджи итальянским ученым К. Гольджи.

   В первой половине XX в. были описаны микротрубочки и эндоплазматический ретикулум, представляющий собой систему мелких вакуолей и канальцев.

Описанием клеточных структур цитология не заканчивается. После их описания с помощью световой микроскопии начинается изучение функций, проводится исследование сложных процессов деления и оплодотворения, выясняется биологическое значение этих процессов.

Данные исследования проводятся с начала XX в., когда в цитологии начинают использоваться совершенно новые методы – культивирования клеток вне организма, цитохимии, а с середины XX в.

   Вопросы

   1. Почему цитология как наука начала активно развиваться только к концу XIX в.?

   2. Назовите имена ученых, которые внесли значительный вклад в становление цитологии.

Цитохимия

Развитие микротехники активно способствовало накоплению данных о тонком клеточном строении. В конце XIX в., благодаря развитию методов специального окрашивания клеточных структур на световом уровне микроскопирования, были выявлены и описаны в клетках сетчатый аппарат Гольджи и митохондрии.

Ближе к середине XX в. появились объемные научные издания, обобщающие достижения в этой области. Область цитологии, которая изучает содержание и распределение химических соединений внутри клетки, динамику их превращений в процессе жизнедеятельности, в том числе при патологии, стали называть цитохимией.

Цитохимия широко используется и в настоящее время. Разработано громадное количество окрасочных приемов, выявляющих конкретные химические соединения в клетке, особенно с использованием люминесцентных микроскопов.

Методы цитохимии подразделяют на две большие категории. К первой категории относятся методы, основанные на использовании специфических красителей, взаимодействующих с конкретными химическими соединениями.

Например, при окрашивании Суданом черным в клетках выявляются жиры в виде черных капель, тогда как ядра и структуры цитоплазмы останутся бесцветными (рис. 2.1).

Вторая категория методов цитохимии основана на проведении химической реакции непосредственно на срезе на предметном стекле. Суть реакции состоит в том, чтобы гидролизовать изучаемое химическое соединение так, чтобы образовались специфические реакционные группы, взаимодействующие с определенным красителем.

Условия гидролиза для каждого соединения подбираются индивидуально. Например, обесцвеченное основание фуксина, взаимодействуя с альдегидными группами, образует прочное соединение, которое в присутствии сернистой кислоты окрашивается в красный цвет.

   Рис. 2.1. Выявление жира в клетках печени аксолотля при окраске Суданом черным.

Классическим примером является реакция Фельгена на выявление ДНК. В этом случае гидролиз проводится в 1М соляной кислоте при длительном нагревании препарата.

В результате реакции от молекулы ДНК отщепляются пуриновые азотистие основания – аденин и гуанин. На их месте на дезоксирибозе образуются свободные альдегидные группы, способные вступить в реакцию с красителем.

Препарат после реакции помещают в раствор красителя. Связывание фуксина происходит строго количественно. После отмывания препарата в слабом растворе сернистой кислоты места локализации ДНК окрашиваются в красный цвет (рис. 2.2а).

Для выявления полисахарида гликогена, мономером которого является глюкоза, предметное стекло с тонкими срезами ткани помещают в раствор периодата калия (KIO4) и проводят гидролиз при комнатной температуре.

Такая обработка приводит к разрушению гликогена в клетках с активацией альдегидных групп в молекуле глюкозы. Затем препарат окрашивают так же, как описано для реакции на ДНК.

В этом случае окрасятся участки клеток, содержащие гликоген. Специфическим в данном случае является не краситель, а подбор соответствующей химической реакции, которая проводится непосредствено на цитологическом препарате (рис. 2.2б).

Рис. 2.2. Выявление ДНК по Фельгену (а) и гликогена после гидролиза в периодате (б) с помощью обесцвеченного основания фуксина. Клетки печени аксолотля.

С помощью цитохимических цветных реакций в клетках выявляют разнообразные полисахариды, специфические аминокислоты в белках, нуклеиновые кислоты, жиры, липиды и множество ферментов, участвующих в метаболических процессах обмена и превращения веществ. Ферменты обычно выявляют по наличию продуктов их активности.

В настоящее время широко используются флюоресцентные красители для специфического окрашивания биологических полимеров или клеточных органелл. Известны флюорохромы для выявления ДНК, РНК, липидов, миотохондрий и т. д. Флюоресцентная цитохимия активно развивается.

   Вопросы

   1. Что такое цитохимия?

   2. Как можно окрасить ДНК в клетках?

   3. Как выявляется в клетках гликоген? Жир?

Ближе к концу XX в. цитохимия перешла на новый качественный уровень. Стало успешно развиваться новое направление цитохимии – иммуноцитохимия, которая в настоящее время является одним из самых передовых методов клеточной биологии.

При использовании для иммуноцитохимии флюорохромы химическим путем «сшивают» (конъюгируют) с антителами. Антитела имеют специфичность к определенному белку, который служит антигеном, и взаимодействуют не с любыми клеточными структурами, а только с теми участками клеток, где находится изучаемый белок.

Антитела, используемые в иммуноцитохимии, могут быть маркированы, помимо люминесцентных красителей, ферментами или электронно-плотными частицами. В такой модификации метода выявление специфических белков осуществляется с помощью электронного микроскопа.

С помощью метода иммуноцитохимии изучены состав и расположение элементов цитоскелета клеток растений и животных, характерные особенности цитоскелета опухолевых клеток.

С помощью этого метода научились выявлять индивидуальность хромосом человека, что необходимо при изучении развития патологий, а также в судебной медицине.

Метод иммуноцитохимии позволил выявить на поверхности разнообразных клеток индивидуальные маркеры, что облегчило понимание многих патологических процессов, позволило выяснить, какие клеточные типы являются отправной точкой в развитии ряда болезней.

   Вопросы

   1. Для чего используется метод иммуноцитохимии?

   2. В чем суть метода?

   3. Что вы знаете о люминесцентном микроскопе?

Микротехника

Размеры клеток имеют величины, выраженные в микрометрах (мкм). Средний размер животной клетки 20–40 мкм, растительные клетки обычно в 2 раза крупнее. Микрометр – это тысячная доля миллиметра, т. е.

Первые простейшие микроскопы были изобретены в конце XVI в. и представляли систему линз над предметным столиком. С помощью такого микроскопа нельзя было увидеть клетки, он не давал достаточного увеличения. В XVII в.

микроскоп был усовершенствован, и с его помощью Р. Гук и А. ван Левенгук осуществляли свои наблюдения и открытия по клеточному строению коры дерева, крови, мужского эякулята, наличия одноклеточных существ в водном настое листьев сенны. В XVIII в.

В начале XIX в. появляются зачатки микроскопической техники – способы приготовления тонких срезов тканей животных. Так, чешский исследователь Я. Пуркинье и его ученики разработали и использовали микротом для приготовления тонких срезов спинного мозга, мозжечка и других тканей, а также окраску срезов, в результате чего было описано живое содержимое клетки – протоплазма.

Использование специальных красителей делает внутреннюю структуру клетки более контрастной, что позволило в 30-е годы XIX в. сформировать представление о наличии ядра в растительных и животных клетках.

Во второй половине XIX в. световой микроскоп был еще раз усовершенствован, изменена его конструкция. Освещение препарата стали производить снизу через систему линз конденсора.

За счет применения объективов и окуляров повысилась разрешающая способность микроскопов, появилась возможность различать в клетке не только ядро и протоплазму, но и другие более мелкие структуры.

Конструкция современных световых микроскопов, которые студенты используют на своих занятиях, мало чем отличается от усовершенствованных микроскопов второй половины XIX в.

Любой современный световой микроскоп имеет в своем составе три оптические системы, работающие совместно: конденсор, объектив и окуляр. Конденсор представляет собой систему линз, которые позволяют сфокусировать источник освещения и осветить объект снизу, чтобы лучи света проходили через тонкий срез.

Лучи света, пройдя через срез, фокусируются объективом. Именно объектив создает первичное увеличение объекта, дает его разрешение, позволяет увидеть мельчайшие структуры клетки.

Окуляр увеличивает изображение, построенное объективом, и направляет его в глаз исследователя. Разрешение объекта остается таким, каким его сделал объектив.

Общее увеличение объекта будет равно произведению увеличения объектива на увеличение окуляра. На занятиях по цитологии чаще всего используется объектив с увеличением ×40 и окуляр, дающий увеличение в 15 раз, тогда общее увеличение будет 40×15.

Нетрудно подсчитать, что это увеличение в 600 раз. Принято записывать увеличение препарата как 40×15; такая запись показывает разрешение объекта, какие детали должны быть выявлены на препарате, объектив с каким увеличением использовался для его анализа.

Световой микроскоп, как любой оптический прибор, имеет важную характеристику – разрешающую способность. Это минимальное расстояние между двумя точками, которые видны раздельно.

Для современных световых микроскопов разрешающая способность равна 0,2 мкм, что соответствует средним размерам митохондрий. То есть под световым микроскопом при максимальном его разрешении митохондрии будут видны в виде точек с минимальными размерами.

Примерно также будут выглядеть и многие другие органеллы цитоплазмы животной клетки. В растительной клетке есть более крупные структуры – хлоропласты и другие пластиды, размеры которых несколько микрометров.

Причиной того, что мелкие структуры клетки видны в световой микроскоп нечетко, является эффект оптической дифракции. В микроскопе яркая точка будет увеличена и выглядит как яркое пятно.

Живые клетки бесцветны и прозрачны. Их показатель преломления близок к показателю преломления окружающего раствора. Поэтому неокрашенные клетки трудно рассматривать под микроскопом.

В начале XIX в. ученые стали использовать цветные красители, которые делали клеточные структуры более контрастными и видимыми в световой микроскоп. Сейчас таких красителей множество.

Некоторые из них преимущественно окрашивают определенные клеточные органеллы. Наиболее часто используемые красители для выявления общей морфологии клеток – это гематоксилин и эозин.

Гематоксилин имеет сродство к отрицательно заряженным молекулам, поэтому выявляет распределение в клетках дезоксирибонуклеиновой кислоты и кислых белков.

Обработка клеток гематоксилином приводит к выявлению структур ядра: хроматина, хромосом, ядрышка. Эти структуры окрашиваются в сине-фиолетовые цвета.

После гематоксилина препарат помещают в раствор эозина, который окрашивает все остальные структуры клетки в розовый цвет. На розовом фоне цитоплазмы будет четко видна контрастная фиолетовая структура ядра.

Наибольшие успехи в описательной цитологии были достигнуты, когда в XIX в. научились делать постоянные, длительно хранящиеся окрашенные препараты клеток и тканей.

Приготовление таких препаратов трудоемко и включает ряд этапов. Первый этап – взятие материала для исследования и фиксация небольшого кусочка ткани (0,5 см3).

Цель этого процесса – быстро законсервировать клетки, но предотвратить распад клеточных структур. Чаще всего в качестве фиксаторов для световой микроскопии используют формалин, спирт, пикриновую кислоту, смеси формальдегида с этиловым спиртом, хотя известны сложные смеси многокомпонентных фиксаторов.

После фиксации из кусочка ткани нужно приготовить тонкие срезы толщиной 5–10 мкм на специальном приборе микротоме с помощью очень острого металлического ножа (лезвия).

Чтобы срезы получились тонкими, кусочек ткани после фиксации обезвоживают с применением серии спиртов повышающейся концентрации и ксилола, затем пропитывают расплавленным парафином при 56ºС.

Приготовленные срезы помещают на предметное стекло, растворяют парафин ксилолом, постепенно замещают ксилол водной средой с помощью растворов этилового спирта убывающей концентрации.

Затем препарат окрашивают в водном растворе красителя. После окрашивания препарат опять обезвоживают и заключают в каплю канадского бальзама под покровное стекло.

   Совокупность приемов и методов приготовления и анализа с помощью световой микроскопии называется микротехникой.

В XX в. были разработаны световые микроскопы, позволяющие более детально изучать живые неокрашенные клетки. Это интерференционная микроскопия, поляризационная микроскопия, разнообразные приставки к обычному световому микроскопу – фазово-контрастная микроскопия и метод темного поля.

При изучении живых клеток широко используется люминесцентная (флюоресцентная) микроскопия. В люминесцентном микроскопе объект освещается ультрафиолетовым лучом, используются особые красители – флюорохромы, которые при поглощении энергии света начинают ярко флюоресцировать.

Флюорохромы могут избирательно связываться с определенными структурами клетки или макромолекулами. При таком микроскопировании светящиеся клеточные структуры выявляются на темном фоне.

   Вопросы

   1. Какой размер имеют клетки?

   2. Перечислите компоненты микроскопа, задействованные в построении изображения. Какую функцию они выполняют?

   3. Что такое разрешающая способность светового микроскопа?

   4. Что такое микротехника?

   5. Для чего используется фиксация? Приведите примеры фиксаторов.

   6. Перечислите этапы приготовления постоянных препаратов.

Метод клеточных культур

Развитие световой микроскопии и техники приготовления препаратов позволило в тридцатых годах XIX в. сформировать представление о таких клеточных компонентах, как протоплазма и ядро.

Впервые это обсуждается в работах Я. Пуркинье и Р. Броуна. Чуть позже немецкий ботаник М. Шлейден обобщил накопленные данные о сходстве строения клеток растений.

Он высказал гипотезу о том, что все растения состоят из клеток, ошибочно считая, что клетки растений образуются путем кристаллизации жидкости вокруг ядра, и появление клеточной структуры растения связано с его жизнедеятельностью.

В 1838 г. Т. Шванн обобщил данные о клеточном строении и растений, и животных и сформулировал представление о клетке как структурной единице всех живых организмов.

Он писал: «Клетки – это организмы, а растения и животные представляют собой агрегаты этих организмов, построенные по определенным законам». Вместе с тем и Шлейден, и Шванн ошибались, считая, что клетки могут образовываться из бесструктурного вещества, а главной структурой, которая обеспечивает особенности клетки, является клеточная оболочка.

По мере развития техники микроскопирования накапливались данные о развитии живых организмов, и во второй половине XIX в. не подтверждается представление о возможности образования клеток из бесструктурного вещества.

Наоборот, утверждается представление немецкого микроскописта и патологоанатома Р. Вирхова о том, что всякая клетка происходит от клетки путем деления предшествующей, рост организма происходит за счет деления клеток.

Таким образом, в 50-е гг. XIX в. клеточная теория была представлена тремя положениями: 1) клетка – элементарная минимальная единица жизни; 2) каждая клетка происходит из себе подобных; 3) организм представляет собой совокупность клеток.

https://www.youtube.com/watch?v=YM4glcIfrck

К концу XIX в. в связи с усовершенствованием микроскопов и микроскопической техники складывается представление о сложной организации клеток; двух процессах клеточного деления – митозе и мейозе, особенностях и значении этих процессов; закладываются знания о процессе оплодотворения.

В XX в. у исследователей появляются совершенно новые методы, которые позволяют изучать не только морфологию клеток, но и сложные этапы метаболизма. При помощи этих методов удалось связать структуру органоидов клетки с функцией, которую они выполняют.

Это методы специфического окрашивания различных классов крупных клеточных молекул, методы слежения за структурными компонентами биополимеров в метаболических путях клетки.

Развиваются биохимические подходы, активно изучается метаболизм клетки. В 30-е гг. XX в. на разных объектах растительного и животного происхождения показывается общность метаболических путей.

И в эти же годы формируется представление о том, что единство клеточных структур основано не только на морфологии, но и на единстве химической организации, единстве всех процессов метаболизма.

И, наконец, в период между 1953 и 1966 гг. была раскрыта природа и пути передачи наследственной информации, доминирующая роль ДНК в этом процессе. На основе этих открытий сформулировано основное положение клеточной биологии: во всех клетках носителем наследственной информации является ДНК, на ней, как на матрице, синтезируются молекулы РНК, которые играют главную роль в реализации наследственной информации в процессе биосинтеза белка.

Таким образом, в настоящее время описаны структуры почти всех клеточных органоидов, определены их основные функции, ученые вплотную подходят к изучению регуляции всего многообразия клеточных процессов и в норме, и в условиях патологии – болезни клетки.

На современном уровне клеточная теория формулируется следующим образом: клетка – элементарная единица всего живого; клетки различных организмов гомологичны между собой, то есть имеют общие черты организации;

каждая клетка образуется путем деления из исходной клетки, рост организма осуществляется за счет деления клеток митозом; многоклеточные организмы представляют собой сложные клеточные системы, объединенные в ткани и органы, связанные между собой тремя формами химической регуляции: межклеточными взаимодействиями, гуморальными и нервными.

Клеточная теория – это основной закон биологии, он подчеркивает общность организации всех клеток и единство происхождения всего живого на Земле. Кроме того, этот закон имеет и практическое значение.

Поскольку в нем говорится о гомологии всех клеток, то информация, полученная для одних клеточных типов, может быть использована для общей характеристики других классов клеток.

Так, очень много информации о функциях клеток человека было получено при изучении менее сложных организмов, например, клеток дрожжей. Их легко выращивать в лаборатории, с ними легко ставить эксперименты.

Эукариотические клетки дрожжей стали моделью для изучения процессов секреции и регуляции клеточного деления. Беспозвоночные организмы: небольшая нематода (Caenorhabditis elegans) и плодовая мушка дрозофила (Drosophila melanogaster) служат прекрасными моделями для изучения процессов специализации клеток и программируемой клеточной смерти.

   Вопросы

   1. Когда было сформулировано представление о клетке как единице всего живого? Какие ученые внесли вклад в формирование этой гипотезы?

   2. В какое время накопились знания о сложной организации клеток, о процессах клеточного деления?

   3. Дайте современную формулировку клеточной теории.

   4. В чем теоретическое и практическое значение клеточной теории?

Рост многоклеточного организма осуществляется за счет деления клеток. Основным типом клеточного деления является митоз. Клетки, которые делятся через некоторые промежутки времени, находятся в клеточном цикле.

Он отражает череду событий в клетке от начала митоза до следующего деления. Промежуток времени между двумя последовательными митозами называется интерфазой.

Митоз происходит в течение 1,5–2 часов, интерфаза во много раз более продолжительна. В это время клетка очень активна. И в ядре, и в цитоплазме происходят синтетические процессы.

Синтезируются нуклеиновые кислоты, белки, клеточные мембраны, образуются разнообразные органоиды. Однако все процессы происходят не хаотично, а в определенной последовательности.

   Рис. 1.4. Схематическое изображение клеточного цикла (по Епифановой, 2003). М – митоз; G1, S, G2 периоды цикла; вместе они составляют интерфазу.

Первый период – G1, он наступает после окончания митоза. Этот период называют также периодом роста клетки, постмитотическим, или пресинтетическим. Дело в том, что в результате митоза из одной материнской клетки образуются две дочерние.

Они меньше исходной материнской клетки, следовательно, им нужно достичь определенного размера. Это возможно только в результате активных процессов синтеза.

Для того чтобы клетка могла подготовиться к следующему делению, должна удвоиться ее генетическая информация, а для этого необходимы специальные ферменты.

Следующий период называется синтетическим, или S-периодом. В это время происходит удвоение всех молекул ДНК в ядре, иначе этот процесс называется репликацией. Это длительный период, обычно он продолжается в течение 9–10 часов.

Клетка – очень надежная система. Каждый процесс обязательно имеет точку контроля. Поэтому в S-периоде обязательно происходит проверка правильности репликации ДНК.

Если какие-то участки ДНК имеют дефекты, то вступают в работу ферменты репарации. Они могут найти неправильно спаренные нуклеотиды в двойной спирали ДНК, удалить небольшой участок одной из нитей и восстановить правильную структуру.

Непосредственная подготовка к митозу происходит в G2-периоде. Иначе этот период называют постсинтетическим, или премитотическим. Обычно это наиболее короткий период интерфазы.

В это время изменяется набор белков в цитоплазме и ядре. Синтезируются белки, необходимые для построения веретена деления. Образуются белки, обеспечивающие перестройку хроматина, так как в митозе из хроматина образуются хромосомы.

Продолжительность клеточного цикла зависит от особенности клеток. В настоящее время показано, что суммарная длительность S-периода и G2-фазы – величина относительно постоянная, для многих эукариот это 10–15 часов.

Время G1-периода может очень сильно изменяться у разных клеточных типов одного и того же организма. Например, у мыши в разных типах эпителиальных клеток длительность G1-периода колеблется от 3 часов в волосяных фолликулах до 528 часов в эпидермисе уха.

Как разбиралось ранее, по мере того как клетка дифференцируется, она утрачивает способность к делению, то есть клетка выходит из клеточного цикла. Выход из клеточного цикла – сложный процесс, который регулируется специальными белками.

Клетка не может выйти из клеточного цикла в любой момент. Она может это сделать только в определенной точке. Чаще всего это происходит в конце G1-периода, реже – в G2-фазе до начала митоза.

Период жизни клетки, когда она находится вне клеточного цикла и не может делиться называется G0-фазой. Существуют клетки, которые пребывают в G0-фазе в течение всей жизни индивидуума.

Это нейроны, мышечные клетки сердца, клетки хрусталика глаза. Клетки печени человека могут в течение нескольких месяцев находиться в G0-периоде, а потом опять войти в клеточный цикл и начать делиться.

Фибробласты соединительной ткани – малодифференцированные клетки. Они активно размножаются при зарастании раны, а до этого могут длительное время находиться вне клеточного цикла в G0-фазе.

Регуляция клеточного цикла, переход из одного периода в другой – очень сложный процесс, который активно изучается в настоящее время. Описаны белки и ферменты-регуляторы клеточного цикла: циклины, протеинкиназы, факторы, стимулирующие клеточный цикл, и факторы, тормозящие его.

Найдены контрольные точки регуляции процессов клеточного цикла. В регуляции участвуют как внутриклеточные белки, так и активные молекулы, выделяемые соседними клетками, а также гормоны, выделяемые в кровь железами внутренней секреции.

Широко известно, что в качестве допинга спортсмены часто используют эритропоэтин. Это биологически активное вещество, стимулирующее деление клеток крови, своеобразный фактор роста.

Факторы роста могут синтезировать и выделять из клеток многие клеточные типы. Известны факторы роста эпителиальных клеток, фибробластов, тромбоцитов и даже нервных клеток.

Конфокальная микроскопия

Во второй половине XX в. стал активно использоваться новый метод микроскопирования, дающий в 100 раз большее разрешение биологических объектов по сравнению со световой микроскопией, – электронная микроскопия.

В электронном микроскопе изображение строится с помощью узкого пучка электронов, с высокой скоростью проходящего через срез ткани и взаимодействующего с ним.

Электроны могут поглощаться срезом или отклоняться от исходного направления, в результате чего узкий пучок электронов будет рассеиваться. В качестве устройств, формирующих и фокусирующих поток электронов до взаимодействия со срезом ткани и после этого, используются мощные кольцевые электромагниты.

Напряжение в колонне электронного микроскопа достигает 100 000 вольт. Изображение строится на люминесцентном экране, который дает свечение при взаимодействии с электронами.

Вместо отображения объекта на светящемся экране его изображение можно зафиксировать на фотопластинке, что дает возможность получить фотоснимок. Для изучения биологических объектов пришлось разрабатывать новые методы приготовления препаратов.

Фиксируют ткани для электронной микроскопии глутаровым альдегидом, который «сшивает» белковые молекулы, и дофиксируют тетраоксидом осмия, который стабилизирует двуслойные липидные мембраны и дополнительно фиксирует тканевые белки.

Для получения срезов образцы ткани пропитывают полимерными смолами, которые затвердевают, образуя твердый пластмассовый блок. С него на специальном приборе ультрамикротоме стеклянными или алмазными ножами делают очень тонкие срезы толщиной 50–100 нм;

с одной клетки можно приготовить 100–200 срезов. Затем срезы пропитывают солями тяжелых металлов (урана, свинца, фосфорно-вольфрамовой кислоты) для увеличения контрастности изображения.

Кроме срезов, под электронным микроскопом изучают крупные биологические молекулы, структуру мембран, белковые глобулы, поверхность клеточных органоидов.

При изучении поверхности органоидов или молекулярных комплексов добиваются контрастного изображения различными приемами. Обычно она достигается за счет напыления под углом к поверхности объекта тонкого слоя золота или платины.

Толщина слоя золота на поверхности соответствует структурным особенностям объекта. Некоторые участки объекта будут иметь более толстый слой напыления, в других местах напыление будет отсутствовать из-за образования теневой зоны.

Поток электронов в микроскопе направлен перпендикулярно к поверхности объекта, что обеспечит выявление светлых и темных участков на изучаемой поверхности, так как в зависимости от толщины слоя напыления металла степень поглощения электронов будет изменяться.

Электронная микроскопия обусловила значительный прогресс в развитии цитологии. Была описана тонкая структура ядра, всех цитоплазматических органоидов: эндоплазматического ретикулума, аппарата Гольджи, всевозможных вакуолей, митохондрий, пластид, центриолей (рис. 5.1).

Электронная микроскопия, в которой изображение строится с помощью потока электронов, проходящих через объект, называется трансмиссионной. Ее разрешающая способность для биологических объектов 2 нм при увеличении ×100 000, что примерно соответствует диаметру двойной спирали ДНК.

Помимо трансмиссионной электронной микроскопии существует растровая (сканирующая) электронная микроскопия, когда изображение строится с помощью электронного луча, отраженного с поверхности изучаемого объекта.

Такие электронные микроскопы называются сканирующими. В микроскопе образец сканируется узким пучком электронов. Когда луч электронов попадает на образец, то поверхность образца, на которую нанесен тонкий слой золота, испускает «вторичные электроны».

Они регистрируются прибором и преобразуются в изображение на телевизионном экране. Максимальное разрешение сканирующего микроскопа меньше, чем трансмиссионного, и составляет 10 нм для биологических объектов, а увеличение ×20 000.

С помощью сканирующих микроскопов изучают внутренние поверхности кровеносных сосудов, поверхности клеток и небольших структур. Сканирующий микроскоп дает объемное изображение.

   Вопросы

   1. Какие типы электронных микроскопов вы знаете? Каково их разрешение?

   2. Какие структуры можно увидеть в ядре и цитоплазме с помощью трансмиссионного электронного микроскопа?

   3. В чем состоит принцип построения изображения в электронном микроскопе?

   4. В чем особенности приготовления препаратов для электронной микроскопии?

Широкий интерес к конфокальной микроскопии появился в конце XX в. благодаря бурному развитию компьютерной и лазерной технологий. Конфокальный микроскоп – это оптико-электронный прибор.

В его основе лежит люминесцентный микроскоп, где объект освещается лазерным лучом и полученное изображение обрабатывается с использованием памяти компьютера.

За счет такого приема можно воссоздать объемное изображение объекта при исследовании серии оптических срезов. Изображение создается на экране компьютера.

Разрешение микроскопа увеличивается по сравнению с обычным люминесцентным микроскопом примерно в 1,5 раза. Основное достоинство конфокального микроскопа – не рост разрешающей способности, а существенное увеличение контрастности изображения.

Конфокальный микроскоп дает две неоценимые возможности: он позволяет исследовать ткани на клеточном уровне в состоянии физиологической жизнедеятельности, а также оценивать результаты исследований в четырех измерениях: высота, ширина, глубина и время.

В таком микроскопе используются принципы люминесцентной микроскопии и иммуноцитохимии с применением специальных флюорохромов для конфокальных микроскопов.

Использование конфокального микроскопа позволяет локализовать отдельные гены в структуре интерфазного ядра; изучать одновременно два или более белков, помеченных разными антителами, чтобы понять существует ли функциональная связь между ними;

Благодаря использованию научно-технических достижений XX и XXI вв. в цитологии были разработаны новые методы, позволившие перейти на новый молекулярный уровень исследований с возможностью изучения не только структур клетки, но и молекул, выполняющих разнообразные функции.

   Вопросы

   1. Опишите принцип устройства конфокального микроскопа.

   2. Каково его разрешение?

   3. Для чего используется конфокальный микроскоп?

Клетки прокариот и эукариот

Живые клетки появились на Земле, видимо, около 3,5–4 миллиардов лет тому назад. Одно из наиболее удивительных свидетельств общности происхождения всех клеток и совместной ранней эволюции – это универсальность генетического кода: организация триплетов нуклеотидов в составе нуклеиновых кислот, которые кодируют аминокислоты, входящие в состав белков.

Генетический код почти не различается у всех современных организмов, следовательно, такой способ кодирования генетической информации появился и закрепился на ранних стадиях эволюции.

Ранние этапы клеточной эволюции связаны с распространением в разных средах обитания небольших клеток размером 1–2 мкм с простой внутренней организацией.

Это клетки прокариот, к ним относятся бактерии, сине-зеленые водоросли, иначе их называют цианобактериями, и микоплазмы. Форма клеток может быть сферической, удлиненной или более сложной (извилистой).

Они имеют плазматическую мембрану, которая служит барьером для транспорта молекул между внутренней средой клетки и ее окружением. В клетке имеется цитоплазма, в центральной части клетки находится одна двуспиральная молекула ДНК, обычно замкнутая в кольцо.

В цитоплазме расположены рибосомы – мельчайшие органоиды, способные синтезировать белок из аминокислот по заданной программе, записанной в матричных РНК (мРНК).

В цитоплазме таких клеток могут храниться вещества запаса. Отличительной особенностью клеток прокариот является наличие сложной, объемной (до 30 % сухого веса) защитной оболочки, которая иначе называется клеточной стенкой (рис. 1.1).

Поскольку в этих клетках происходят активные синтетические процессы, требующие больших затрат энергии, то клетке необходимы молекулы – носители энергии.

Такими молекулами являются АТФ, они образуются в процессе дыхания на складчатых выростах плазматической мембраны, направленных внутрь клетки, называемых мезосомами.

Рис. 1.1. Схема строения клетки прокариот: а) микоплазма; б) бактерия; в) цианобактерия (по Ролан, Селоши, Селоши, 1978). 1 – ДНК; 2 – рибосомы; 3 – цитоплазматическая мембрана; 4 – мезосома;

Бактерии – это наиболее простые одноклеточные организмы, обнаруженные в самых разнообразных средах обитания. Они легко приспосабливаются к окружающей среде, очень быстро размножаются.

Каждые 20–30 минут после удвоения кольцевой молекулы ДНК клетка делится надвое, если в среде обитания достаточно веществ, способных обеспечить все эти процессы энергией.

Бактерии живут на Земле дольше других организмов и превосходят по численности все другие типы клеток. В настоящее время хорошо изучен генетический материал бактериальных клеток, и показано, что в составе кольцевой ДНК находится около 5000 генов, кодирующих разнообразные белки бактерий.

Цианобактерии, в ботанической литературе их называют сине-зелеными водорослями, сходны по простоте организации с бактериями и обитают в водной среде. Они имеют клеточную стенку, сходную по химическому составу с бактериями, аналогично бактериям у них организован генетический аппарат и все клеточные структуры.

Цианобактерии в несколько раз крупнее обычных бактериальных клеток. Главная их особенность – способность к фотосинтезу, который происходит на особых мембранных образованиях внутри прокариотической клетки.

Микоплазмы – мельчайшие клеточные организмы прокариотического типа. Их размер примерно 0,3 мкм, что соответствует среднему размеру митохондрий, имеющихся в эукариотической клетке.

Чаще всего микоплазмы являются паразитами, обитающими в растительных или животных клетках. Паразитический образ жизни привел к упрощению их организации: они утратили клеточную стенку, границей клетки служит плазматическая мембрана;

их молекула ДНК в несколько раз меньше ДНК обычной бактериальной клетки, в ней закодировано всего несколько сот белков, обеспечивающих жизнедеятельность микоплазм.

Большинство необходимых молекул микоплазмы получают из клетки, в которой они паразитируют. Примером может служить микоплазма, паразитирующая в эпителиальных клетках половых путей человека, являясь причиной хронических воспалений половых путей.

На эволюционном пути клеточного развития имеется важная веха. Приблизительно 1,5 миллиарда лет тому назад произошел переход от маленьких клеток со сравнительно простой организацией – прокариот, к бо́льшим по размерам и значительно более сложно устроенным эукариотическим клеткам – клеткам растений, грибов и животных.

   1. Имеют оформленное ядро со сложной структурой организации.

   2. Они гораздо крупнее прокариотических клеток, их средний размер несколько десятков микрометров.

   3. В цитоплазме имеются органоиды, окруженные мембраной, и цитоскелет белковой природы, обеспечивающий движение органелл и самой клетки.

4. Деление эукариотических клеток – это сложный процесс, связанный с образованием хромосом, веретена деления и распределением хромосом между дочерними клетками. Основной тип деления эукариотической клетки – митоз.

   5. Оболочки эукариотических клеток отличаются по химическому составу и строению от клеточной стенки прокариот.

Рассмотрим схему строения растительной и животной клетки с учетом данных электронной микроскопии (рис. 1.2). Анализ схемы показывает, как много общего между этими клетками: организация и структура ядра, наличие плазматической мембраны, цитоплазмы, органоидов цитоплазмы, таких как эндоплазматический ретикулум, аппарат Гольджи, митохондрии, рибосомы, микротрубочки.

Следовательно, даже если рассматривать только морфологию растительной и животной клетки, не учитывая функции органоидов, можно говорить о гомологии этих клеток.

Однако в их организации есть и различия, они объясняются прежде всего тем, что растительные и животные клетки характеризуются разным типом питания. Животные клетки являются гетеротрофами, они получают большинство органических молекул из окружающей среды в процессе питания, это – сахара, аминокислоты, органические кислоты.

Растительные клетки – автотрофы. Они могут аккумулировать солнечную энергию, превращая ее в энергию химических связей. За счет фотосинтеза в растительной клетке образуются сахара, аминокислоты, жиры, белки и углеводы.

Для этого в растительной клетке есть специальные органоиды – хлоропласты, которые функционально связаны и с другими пластидами. Кроме того, у нее присутствует прочная твердая оболочка поверх плазматической мембраны.

Особенности жизненной организации привели к образованию большой центральной вакуоли, которая представляет собой резервуар для воды, обеспечивает напряженность клетки и является местом отложения продуктов обмена веществ.

Рис. 1.2. Схема строения клетки животных (а) и растений (б) с учетом данных электронной микроскопии (по Ченцову, 1988). 1 – плазматическая мембрана; 2 – клеточная стенка;

3 – плазмодесмы; 4 – микроворсинки; 5 – ядро; 6 – хроматин; 7 – ядерная оболочка; 8 – ядрышко; 9 – ядерная пора; 10 – рибосомы; 11 – гранулярный эндоплазматический ретикулум;

12 – аппарат Гольджи; 13 – секреторные вакуоли; 14 – первичные лизосомы; 15 – вторичные лизосомы; 16 – пиноцитозные вакуоли; 17 – гладкий эндоплазматический ретикулум;

18 – отложение гликогена; 19 – митохондрии; 20 – хлоропласты; 21 – вакуоли; 22 – капли липидов; 23 – центриоль; 24 – микротрубочки; 25 – микрофиламенты.

Анализ сходства и различия в организации эукариотических и прокариотических клеток показал, что эти клетки устроены по-разному. Но, тем не менее, можно говорить о гомологии и между этими клетками.

Общие черты их организации состоят в следующем: все типы клеток имеют плазматическую мембрану и цитоплазму; наследственная информация однотипно закодирована в молекулах ДНК;

реализация наследственной информации происходит в процессе синтеза белка на рибосомах с помощью молекул РНК; носителем энергии во всех типах клеток являются молекулы АТФ.

Таким образом, первое положение клеточной теории, говорящее о том, что клетка – это элементарная единица всего живого и все клетки гомологичны между собой, опирается на общую основу принципов организации клеток прокариот и эукариот.

   Вопросы

   1. Приведите примеры представителей прокариот.

   2. Опишите организацию прокариотической клетки.

   3. В чем особенности организации цианобактерий и микоплазм?

   4. Какие размеры имеет прокариотическая клетка?

   5. Чем эукариотические клетки отличаются от прокариотических?

   6. Что общего между клетками растений и животных?

   7. Какие особенности есть в организации растительной клетки и с чем это связано?

   8. Почему мы говорим о гомологии всех типов клеток?

Метод клеточных культур

Метод авторадиографии используют для выяснения, в каких местах в клетке идет синтез тех или иных полимерных молекул, для изучения, куда переносятся синтезированные вещества.

Иначе метод называют радиоавтографией. Он может использоваться применительно и к световой, и к электронной микроскопии. Метод позволяет обнаруживать в клетке биологические полимерные молекулы, меченые радиоактивными изотопами.

Ядра радиоактивных изотопов нестабильны, подвергаются распаду, испуская заряженные частицы или γ-лучи. Экспериментатор регистрирует этот радиоактивный распад на фотопленке.

Обычно в кровь животному вводится мономер биополимера, в котором один из атомов водорода замещен на радиоактивный тритий. Например, в состав молекулы ДНК входит нуклеотид тимидин.

В молекуле тимидина один из атомов водорода замещают на тритий. Тимидин, распространяясь с кровью, будет включаться в те клетки, где в данный момент идет репликация ДНК.

На окрашенных срезах тканей можно будет выявить клетки, находящиеся в S-фазе клеточного цикла. Для этого на окрашенный срез в темноте наносят обычную фотоэмульсию, которая при хранении препаратов засвечивается под действием энергии, излучаемой изотопами.

После проявления фотоэмульсии над клетками, находящимися в S-фазе клеточного цикла, появляются черные гранулы восстановленного серебра, образующиеся в фотоэмульсии.

Именно так в 60-е гг. XX в. было показано, что в составе нейронов головного мозга, в некоторых его отделах, возможна репликация ДНК. Но в то время было трудно представить, что в головном мозге млекопитающих присутствуют стволовые клетки, способные к делению.

Именно методом авторадиографии было показано, что ДНК всегда находится в ядре и никуда оттуда не выходит. РНК, напротив, синтезируется в ядре, а затем выходит в цитоплазму.

Белок никогда не синтезируется в ядре. Место синтеза белка – рибосомы цитоплазмы. Отсюда белок может перемещаться и в ядро, и внутрь органелл цитоплазмы.

В заключение следует отметить, что каждый метод имеет свои преимущества и недостатки. Исследователь должен использовать несколько взаимодополняющих методов, чтобы сделать окончательный вывод.

   Вопросы

   1. Для чего используется метод авторадиографии?

   3. Какие результаты получены с помощью этого метода?

В начале XX в. французский ученый А. Каррель установил, что в асептических условиях клетки многоклеточного организма могут расти в искусственной питательной среде в течение длительного времени.

В настоящее время известно, что большинство видов клеток растений и животных в благоприятных условиях способны не только жить и размножаться вне организма, но и дифференцироваться, приобретая важные черты специализации. Например, клетки сердечной мышцы в клеточной культуре могут сокращаться.

Для получения клеточной культуры небольшие кусочки ткани диссоциируют на отдельные клетки, используя ферментативную и механическую обработку, и получают суспензию клеток.

Затем клетки помещают в специальные сосуды с плоским дном: стеклянные или пластиковые, и заливают искусственной питательной средой. Для каждого типа клеток среда индивидуальна.

Для большинства животных клеток питательная среда имеет в своем составе глюкозу, незаменимые аминокислоты, витамины и небольшой процент сыворотки крови.

Важно поддерживать нейтральную реакцию среды, оптимальную температуру, не допускать инфекционного заражения. В таких условиях клетки осаждаются на дно сосуда культивирования, прикрепляются к стеклу, распластываются на нем, приобретают характерную для них форму и начинают делиться.

Через несколько суток вся поверхность дна сосуда становится заполненной клетками. Наступает момент контактного торможения, клетки прекращают делиться.

Нормальные клетки могут в течение некоторого времени сохранять жизнеспособность в таком покоящемся состоянии. Для дальнейшего культивирования их собирают из первого сосуда и переносят в несколько других сосудов в тех же условиях. Цикл повторяется заново. Так получают перевиваемые клеточные культуры.

Именно с помощью метода клеточных культур впервые были описаны особенности опухолевых клеток. Первая особенность – способность к бесконечному делению. В 50-е гг. XX в.

была получена перевиваемая клеточная культура раковых клеток опухоли молочной железы. Культура получила название HeLa по первым буквам имени оперированной пациентки.

Эти клетки живы до сих пор, и с ними работают во многих лабораториях мира. За прошедшие годы ученые вырастили тонны этих клеток, хотя самой пациентки давно уже нет в живых.

Другая особенность раковых клеток: они не прекращают делиться, заполняя всю поверхность сосуда. Клетки наползают друг на друга, могут образовывать второй и третий слой.

Нетрансформированные нормальные клетки могут делиться ограниченное количество раз. Такую культуру нельзя поддерживать бесконечно долго. После нескольких пересевов клетки перестают делиться и погибают.

Работа с клеточными культурами дает большие возможности для исследователей. На ранних этапах развития цитологии клеточные культуры использовали для визуального наблюдения за живыми клетками.

Изучали процессы митоза, движения клеток, образования контактов между клетками. Сейчас на клеточных культурах изучают процессы дифференцировки, получают перевиваемые клеточные линии стволовых эмбриональных клеток.

Клеточные культуры используют для моделирования различных патологических состояний: ишемии, химического или гормонального стресса, для переноса чужеродной генетической информации и т. д.

Клеточные культуры находят широкое практическое применение для получения специфических антител, ферментов, факторов регуляции жизнедеятельности клеток, их используют при разработке вакцин.

Из клеточных культур растений можно вырастить целые организмы, поэтому их используют для создания новых сортов растений, обладающих важными для человека свойствами.

   Вопросы

   1. Как получают перевиваемые клеточные культуры?

   2. Какие особенности раковых клеток были изучены в клеточной культуре?

   3. Для чего используются клеточные культуры?

Строение и функции ядра

Дифференцировка клеток. В организме человека сегодня выделяют более 200 разнообразных клеточных типов, различающихся по выполняемым функциям и особенностям организации.

Вспомним простые примеры дифференцированных клеток: клетки эпителия, нервной, мышечной и соединительной ткани (рис. 1.3). Среди них есть и безъядерные клетки – эритроциты млекопитающих, в том числе и человека.

Эти эукариотические клетки в процессе созревания утратили ядро, а с ним и способность к делению. Разнообразие клеток многоклеточных организмов связано с тем разнообразием специфических функций, которые выполняют клетки.

Рис. 1.3. Морфологическое разнообразие дифференцированных клеток животных. 1 – клетка печени аксолотля; 2 – нейрон спинного мозга собаки; 3 – эритроциты лягушки;

4 – эритроциты человека; 5 – многоядерная поперечно-полосатая мышечная клетка языка кролика в продольном сечении; 6 – фибробласт соединительной ткани.

Дифференцировка – это сложный и часто длительный процесс. Клетка постепенно меняет форму, в ней изменяется состав органоидов, некоторые из которых могут размножаться, например митохондрии.

Другие органоиды в процессе дифференцировки могут утрачиваться. Например, в цитоплазме зрелого эритроцита млекопитающих остаются только рибосомы, поэтому на препаратах под световым микроскопом в цитоплазме этих клеток отсутствует зернистость.

В мышечных клетках постепенно исчезает кажущаяся хаотичность расположения клеточных структур, органоиды ориентируются правильными рядами. В процессе дифференцировки возможно изменение поверхности клеток.

Как же возникают разнообразные клеточные типы в многоклеточном организме? За редким исключением все клетки многоклеточного организма содержат одинаковый набор генов, однотипную генетическую информацию.

Например, у человека в каждой клетке присутствуют около 30 000 генов. На современном этапе развития клеточной и молекулярной биологии, генетики, эмбриологии считается, что индивидуальное развитие от одной оплодотворенной яйцеклетки до многоклеточного организма с большим разнообразием клеток – результат сложного взаимодействия клеток и регуляции работы генов.

Обычно в дифференцированной клетке работает 15–20 % генов, характерных для клеток с конкретной специализацией. Остальные гены находятся в неактивном состоянии.

В организме присутствуют механизмы, регулирующие работу генов. Если научиться управлять ими, можно регулировать процесс дифференцировки. Современная наука близка к этому.

Стволовые клетки. Очень часто процесс дифференцировки приводит к тому, что клетки утрачивают способность делиться. Дифференцированные клетки функционируют какое-то время, потом погибают, причем их гибель происходит по заданной программе, которая тоже регулируется генетически.

Например, продолжительность жизни эритроцитов человека около 120 суток, а эпителиальных клеток тонкого кишечника – не более нескольких дней. Есть клетки, продолжительность жизни которых соответствует жизни индивидуума, например нейроны.

Но, как теперь стало известно, при травмах и патологических состояниях состав нейронов тоже может пополняться, хотя бы частично. Таким образом, в каждом органе, в каждом типе ткани присутствуют недифференцированные или мало дифференцированные клетки, которые способны к делению.

За счет таких клеток ткани и органы обновляются в течение всей жизни. Исходные клетки в обновляющихся тканях животных называются стволовыми. Стволовые клетки индивидуальны для каждого типа ткани.

Их особенность не только в том, что они не дифференцированы, но и в том, что они самоподдерживаются. После деления стволовой клетки митозом образуются две идентичные клетки, одна из которых остается в популяции стволовых клеток, а другая начинает дифференцироваться.

Название «стволовые (родоначальные) клетки» было предложено русским ученым А. А. Максимовым в 1909 г. Большую роль в исследовании стволовых клеток сыграли работы российских ученых – А. Я. Фриденштейна, Н. Г. Хрущева и сотрудников.

Принято разделять стволовые клетки на эмбриональные (выделяют из эмбрионов на ранней стадии развития, когда еще нет ни тканей, ни закладок органов) и региональные стволовые клетки, которые выделяют из органов взрослых особей или органов эмбрионов более поздних стадий.

У растений обновление тканей и органов происходит иначе – за счет меристемы, которая закладывается на эмбриональной стадии развития и сохраняется в различных частях растения в течение его жизни.

Полипотентность и тотипотентность клеток. Обычно в составе ткани или органа функционируют несколько клеточных типов. Вспомним хотя бы клеточный состав крови: эритроциты, лимфоциты, лейкоциты, тромбоциты.

Все эти разнообразные клетки образуются в процессе дифференцировки из одной стволовой кроветворной клетки, которая находится в красном костном мозге плоских и трубчатых костей.

Таким образом, стволовая клетка – родоначальница клеток крови – может дифференцироваться в разных направлениях. В таких случаях говорят, что стволовые клетки полипотентны, то есть они могут дифференцироваться в нескольких направлениях.

Другой пример полипотентности – нейрональные стволовые клетки, обнаруженные недавно в некоторых отделах головного мозга, они могут превращаться в клетки, входящие в состав ткани головного мозга: нейроны, астроциты и олигодендроциты.

Не все стволовые клетки обладают таким свойством. Клетки – предшественники поперечно-полосатых мышечных клеток проходят дифференцировку только в одном направлении, они сливаются и преобразуются в гигантские сократительные мышечные волокна.

Существуют стволовые клетки, которые могут дифференцироваться в любом направлении. Из них могут получиться и нейроны, и эпителиальные, и мышечные, и любые другие типы клеток.

О таких стволовых клетках говорят, что они тотипотенты. Тотипотентные стволовые клетки называются эмбриональными стволовыми клетками и находятся в определенных участках развивающегося эмбриона.

Ученые разработали методы получения таких клеток и выращивания их в перевиваемой клеточной культуре. Клеточные культуры тотипотентных эмбриональных стволовых клеток служат прекрасной моделью для изучения процесса дифференцировки.

Предполагается, что в перспективе эмбриональные стволовые клетки можно будет использовать для лечения больных, получивших тяжелые травмы головного и спинного мозга, перенесших инфаркты и другие тяжелые заболевания, связанные с поражением тканей, которые при обычном лечении очень плохо восстанавливаются.

Во всех ядрах клеток, даже дифференцированных, хранится генетическая информация, которая должна обеспечить специализацию клеток в любом направлении. Но ядро находится под воздействием цитоплазмы, гормонов, разнообразных сигнальных молекул и определенного клеточного окружения.

Это приводит к тому, что большая часть генетической информации присутствует, но не функционирует, находится в неактивном состоянии. Ученые исследуют, каким образом можно активировать гены, находящиеся в ядре, создавая определенные искусственные условия.

Такие работы начали проводить со второй половины XX в. Широко известным примером успешных шагов в этом направлении может служить клонированная овца по кличке Долли.

Ее вырастили из неоплодотворенной яйцеклетки, у которой ее собственное ядро заменили на ядро высокодифференцированной клетки эпителиального происхождения из молочной железы другой овцы.

Подобных экспериментов было проведено много с разнообразными представителями домашних животных. Все эти исследования показывают, что ядра дифференцированных клеток животных и растений обладают свойством тотипотентности, и проявляться это свойство может в искусственно созданных экспериментальных условиях.

Репродуктивное клонирование встречается с множеством этических, религиозных, юридических проблем, которые в настоящее время еще не имеют решения. В некоторых государствах работы по репродуктивному клонированию запрещены на законодательном уровне.

   Вопросы

   1. Что такое дифференцировка?

   2. Приведите примеры дифференцированных клеток. Почему вы считаете, что это дифференцированные клетки?

   3. Что такое стволовые клетки? В чем их особенность?

   4. Объясните понятия: полипотентность и тотипотентность клеток. Приведите примеры.

Ядро – это наиболее крупная структура эукариотической клетки; обычно расположено в центральной части животной клетки или сдвинуто к периферии центральной вакуолью в растительной клетке.

Впервые ядро было выявлено Р. Броуном в 1833 г. в клетках орхидей под световым микроскопом. Длительное время функция ядра оставалась невыясненной, и только в конце XIX в.

, когда было описано, как ведет себя ядро в процессах деления клетки, стала проясняться основная функция ядра. Постепенно появились свидетельства того, что в ядре сконцентрирована генетическая, наследственная информация клетки, которую переносят хромосомы в процессе деления.

Не все эукариотические клетки имеют ядро. Известно несколько видов клеток как растений, так и животных с конечным этапом дифференцировки, которые утрачивают ядро по мере приобретения узкой специализации.

Такие клетки не могут делиться. Примером безъядерных клеток могут служить клетки хрусталика глаза и эритроциты млекопитающих. И те, и другие являются носителями преимущественно одного типа белка.

В эритроцитах накапливается гемоглобин, обеспечивающий газообмен, а в клетках хрусталика – кристаллин, благодаря чему сохраняется его прозрачность. У цветковых растений безъядерными клетками являются проводящие элементы флоэмы – ситовидные трубки.

Они состоят из тяжей удлиненных клеток, соединенных друг с другом. Каждая клетка имеет перфорации на концах в клеточной оболочке. Через перфорации проходят тяжи цитоплазмы из одной клетки в другую, за счет чего образуется единая система проведения веществ. Ядро утрачивается в процессе созревания ситовидных трубок.

Фракционирование клеток

С середины XX в. цитологи получили возможность исследовать не только целые клетки, но и отдельные органоиды, выделенные из клеток в жизнеспособном состоянии.

Для получения образцов органоидов фрагменты ткани разрушают таким образом, чтобы клеточные структуры остались неповрежденными. С этой целью подбирают подходящие условия гомогенизации, т. е.

разрушения клеток, подходящую среду для выделения клеточных структур, буфер для поддержания определенного рН, в процессе выделения поддерживают низкую температуру, близкую к нулю.

В результате получают суспензию клеточных органоидов, которая содержит ядра, митохондрии, лизосомы, аппарат Гольджи, фрагменты эндоплазматического ретикулума, рибосомы и обрывки клеточных мембран.

Суспензию начинают центрифугировать на специальных приборах – центрифугах. Разные органоиды осаждаются на дно пробирки при разных скоростях центрифугирования.

Скорость оседания зависит от размера частицы и ее плотности. При низких скоростях центрифугирования в первую очередь осаждаются ядра. Получив осадок ядер, оставшуюся суспензию переливают в другую пробирку для следующего этапа центрифугирования.

Осадок, состоящий из клеточных ядер, размешивают и используют в экспериментальной работе. Так повторяют несколько раз, увеличивая скорость и продолжительность центрифугирования.

Самые высокие скорости центрифугирования необходимы для получения самых маленьких органелл – рибосом. Ядра осаждаются на дно пробирки при центрифугировании в течение двух минут с ускорением 2000 g.

Осадок митохондрий получают через 30 минут центрифугирования с ускорением 15 000 g, а рибосомы собирают через 3 часа центрифугирования с ускорением 40 000 g.

С помощью этого метода впервые в клетках были открыты лизосомы – небольшие вакуоли, содержащие гидролитические ферменты и выполняющие пищеварительные функции в клетках.

После открытия лизосом методом фракционирования, их обнаружили на срезах клеток под световым и электронным микроскопом с помощью метода цитохимии, выявив работу специфических ферментов.

Возможность получения чистых фракций отдельных органоидов позволила изучить их химический состав, набор ферментов и, в конечном итоге, понять, как работает та или иная клеточная структура.

   Вопросы

   1. Что такое гомогенизация клеток?

   2. Почему разные органоиды клетки при центрифугировании осаждаются на дно не одновременно?

   3. Какие клеточные органоиды были открыты именно с помощью метода фракционирования клеток?

Понравилась статья? Поделиться с друзьями:
Медицинский взгляд на еду
Adblock
detector