Основной метод цитологии изучающий жизнедеятельность клетки

Самые известные имена в истории изучения клетки

Роберт Гук, занимавшийся изучением строения растительной клетки, считал, что живыми являются их стенки, а не содержимое. Через 10 лет итальянский врач Марчелло Мальпиги предложил первую клеточную теорию строения растений.

Он считал, что все органы растений образованы клетками, в которых есть цитоплазма. Энтони ван Левенгук рассмотрел эритроциты крови и сперматозоиды человека, а известный зоолог из Франции Жан Батист Ламарк допустил, что все живые организмы строятся из клеток.

Положения современной клеточной теории ввели немецкие биологи Теодор Шванн и Матиас Шлейден, а дополнил ее российский патологоанатом Рудольф Вирхов. Так зародилась новая наука о клетках, и случилось это в 1839 году, когда на вооружении биологов были только световые микроскопы и довольно скудный арсенал знаний.

Цитология относится к молодым биологическим наукам, её возраст – около 100 лет. А возраст термина «клетка» — более 300 лет.

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858).

Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

Какая наука занимается изучением жизнедеятельности клеток?

Задача биолога-цитолога – установить строение клетки, ее структурных компонентов, законов жизнедеятельности и нормального функционирования. Наука цитология, от греческого слова «cytoc» – «клетка», кроме перечисленного, изучает появление и смерть клеток, процессы из размножения.

На границе этих знаний находится патоморфология клеток, клиническая цитология – науки, которые описывают и изучают патологические состояния клетки. Биохимия и биофизика клетки изучает основы процессов ее жизнедеятельности.

А генетика клетки изучает законы наследования и перераспределения материала наследственности на клеточном уровне. И каждая из перечисленных отраслей биологии имеет свой план и методы изучения жизнедеятельности клетки.

Первые микроскопы

Исторически первыми приборами для изучения клеток были световые микроскопы. Принцип их работы заключается в том, что через прозрачный объект проходят лучи света, которые после этого попадают в систему увеличительных линз.

Современные световые микроскопы дают возможность увеличения объекта наблюдения в 2 тысячи раз. Но возможности его ограничиваются разрешающей способностью – минимальным расстоянием между двумя точками, когда их еще видно как отдельные объекты.

Границы этой способности – физические особенности природы света, длина световой волны. Лучший современный световой микроскоп позволяет увидеть структуры с расстоянием между элементами в 0,25 микрометра.

Для сравнения: размер бактерии кишечной палочки – 2 микрометра. Таким образом, световая микроскопия позволяет изучать одноклеточные организмы, строение тканей и клеток, но внутреннее строение органелл клетки, мелких бактерий и вирусов недоступны данному методу изучения жизнедеятельности клеток.

Но определенные преимущества у данного метода есть – он позволяет вести прижизненное изучение биологического объекта. Кроме того, различные методики окрашивания препаратов дают четкие картинки и широко используются в клинической диагностике.

Границу разрешительной способности можно перешагнуть, если использовать не свет для получения изображения, а электроны. И такой шаг был сделан в 1931 году, кода был выдан первый патент на просвечивающий электронный микроскоп.

В данном устройстве тоже есть линзы, но они не стеклянные, а магнитные. Они фокусируют электроны и выводят изображение на экран. Электронная микроскопия как метод изучения жизнедеятельности клетки позволяет увеличить объект в миллион раз, а граница разрешающей способности увеличивается до 0,5 нанометров.

Современные электронные микроскопы бывают просвечивающими и растровыми (сканирующими). Но какого типа ни был бы увеличительный прибор, у него есть свои недостатки.

Несмотря на очень высокую четкость изображения, такие приборы не позволяют изучать биологические объекты при жизни, и подготовка образца для такого исследования – очень долгий и дорогостоящий процесс.

Разобрать клетку на части

Для изучения строения отдельных структурных компонентов клетки важно выделить их в чистом виде, что стало вполне реальным в начале 40-х годов прошлого века.

Такое разделение на фракции возможно при использовании дифференционного центрифугирования как одного из методов изучения жизнедеятельности клетки. План применения этого метода состоит из двух этапов: разрушение клетки и разделение компонентов на фракции, различные по своему молекулярному весу.

В центрифуге, за счет центробежных сил, более тяжелые компоненты оседают первыми. Так, при высоких скоростях центрифугирования, ядра клеток оседают первыми, затем – митохондрии и другие органеллы, последними оседают рибосомы.

Отделенные органеллы легко изучать под микроскопом. При осторожном применении данного метода изучения жизнедеятельности клетки план строения органелл сохраняется, и появляется возможность установить молекулярный механизм некоторых процессов.

Заморозим и изучим

Довольно новым в биологии методом изучения клетки является замораживание-скалывание. При обычной заморозке в клетках появляются кристаллы льда, которые искажают структуру.

Но при быстрой заморозке жидким азотом (температура минус 196 градусов по Цельсию) вода не переходит в кристаллическую форму и клетки не деформируются.

Затем кусочки образца раскалывают, избытки льда удаляют, напыляют слой тяжелых металлов. Затем саму ткань образца растворяют, а оттиск оставляют и в результате получают эффект теней.

Изображение в микроскопе получается объемным. Именно благодаря использованию такого метода изучения жизнедеятельности клеток удалось изучить строение мембран.

Метод культуры

Какие методы используют для изучения клеток современные ученые? Вот один из самых необычных и невероятно перспективных – выращивание на специальных средах.

Этот метод используется, когда необходимо много одинаковых клеток для изучения. Причем живых. Тогда готовится очень сложная среда (13 аминокислот, 8 витаминов, глюкоза, антибиотики и минеральные соли), на которую помещают культуру клеток.

Известно, что клетки в культуре погибают после определенного числа делений. Но в культуре могут появиться мутантные виды, которые способны к бесконечному размножению.

Именно их и выводят в чистую линию, которая называется перевиваемой. Самая известная такая линия — линия HeLa – клетки раковой опухоли шейки матки. Они были выведены в 1952 году.

Микрохирургия в клетках

Это один из самых интересных методов изучения клеток. Микроманипуляторами (очень маленькие крючки, пипетки, иглы, капилляры) клетка разрезается, и в нее можно как что-либо добавить, так что-либо и изъять.

За всем процессом специалист следит в микроскоп. Именно таким способом можно пересадить ядро одной клетки в другую и доказать, что именно оно является видоопределяющим фактором (такие опыты были проведены с амебами).

Этот способ открывает возможности введения в живые клетки антител и специальных белков, которые значительно влияют на жизнедеятельность. Метод сегодня активно развивается, широко применяется он в генной инженерии – отдельном направлении биологии, направленном на манипуляции с генами организмов и выращивание искусственных белков, тканей и целых организмов.

Нанороботы в цитологии

Американскими биологами уже создан нанозонд, который может мониторить электрохимические и биохимические процессы в живых клетках. Экспериментальная модель настолько мала, что способна поместиться в ядре или даже митохондрии.

А вот в Швеции разработан наносенсор, который измеряет рН в цитоплазме клетки и способен отличить даже отдельные молекулы химических веществ в разных частях клетки.

В Кембриджском университете ученые спроектировали нанодвигатель, способный доставить внутрь клетки что угодно – от молекул питательных веществ до антител.

И напоследок. Датчики здоровья, молекулярные ассемблеры, нанозонды и устройства хранения информации – это уже не будущее технологий, а настоящее. Американский изобретатель и футуролог Рэй Курцвейл утверждает, что с помощью нанотехнологий биологическая нервная система человека может быть подключена к Интернету уже в 2030 году.

Все живые организмы состоят из клеток – из одной (одноклеточные организмы) или многих (многоклеточные).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека.

Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела).

  • Цитоморфологии, которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии, которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии, которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики, которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии, которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии, которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

Понравилась статья? Поделиться с друзьями:
Медицинский взгляд на еду
Adblock
detector