Цитологические основы наследования признаков при моногибридном скрещивании

16. Живая масса свиноматок — молочность (масса гнезда при отъеме),кг

115
— 55 235 — 45 222 — 60 180 — 48 220 — 77

204
— 50 216 — 65 183 — 44 156 — 41 198 — 63

173
— 40 195 — 53 180 — 48 144 — 58 166 — 52

250
— 55 191 — 46 156 — 50 181 — 55 169 — 35

196
— 43 172 — 50 144 — 58 157 — 50 215 — 59

221
— 37 235 — 70 181 — 54 168 — 47 223 — 52

210
— 57 221 — 49 161 — 51 158 — 50 200 — 51

185
— 56 153 — 49 211 — 50 144 — 49 185 — 41

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ПРИЗНАКОВ

Сцепление генов — это совместное наследование генов, расположен­ных в одной и той же хромосоме. Количество групп сцепления соответству­ет гаплоидному числу хромосом, то есть у дрозофилы 4; у КРС — 30.

Природу сцепленного наследования объяснил в 1910 г. Морган с сотруд­никами. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного фе­номена, так в клетках ее тела, находится только 4 пары хромосом и имеет ме­сто высокая скорость плодовитости (в течение года можно исследовать более 20-ти поколений).

Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана).

Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сце пление между ними и тем чаще возможно его нарушение.

На рисунке 1.

Слева: р асстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется.

Справа:  расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В, поэтому сцепление не

полное, хромосомы в гаметах образуются четырех типов — 2 идентичные             родительским (некроссоверные) 2 кроссоверных варианта.

Рис. 1

Количество разных  типов гамет бу дет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера.

Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).

Рисунок 2

Фенотипы

Б-тёмное тело, короткие крылья (повторяет отцовскую форму)

В-серое тело, короткие крылья (отличается от родителей)

Г-тёмное тело, нормальные крылья (отличается от родителей)

В и Г получены в результате кроссинговера в мейозе.

Рис. 2

«Гены, расположенные в одной хромосоме, наследуются совместно». 

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А).

Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, — доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья — Сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т.е.

Сцепление может нарушаться. Это доказывают особи В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть.

Цитологические основы наследования признаков при моногибридном скрещивании

На рисунке 3 опыт Моргана отображен подробно.

Рис. 3

Для решения задач важно уловить механизм, поэтому ниже на схемах

Термины и понятия, проверяемые в экзаменационной работе: аллельные гены, анализирующее скрещивание, ген, генотип, гетерозиготность, гипотеза чистоты гамет, гомозиготность, дигибридное скрещивание, законы Менделя, моногибридное скрещивание, морганида, наследственность, независимое наследование, неполное доминирование, правило единообразия, расщепление, фенотип, хромосомная теория наследственности, цитологические основы законов Менделя.

1. Объектом исследования стали растения гороха, принадлежавшие к одному виду.

2. Опытные растения четко отличались по своим признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.

3. Первое поколение от исходных родительских форм всегда было одинаковым. Высокие родители давали высокое потомство, низкие родители давали растения маленького роста. Таким образом, исходные сорта были так называемые «чистые линии».

4. Г. Мендель вел количественный учет потомков второго и последующих поколений, у которых наблюдалось расщепление в признаках.

Законы Г. Менделя описывают характер наследования отдельных признаков на протяжении нескольких поколений.

– форма семени (круглая / некруглая);

– окраска семени (желтая / зеленая);

– кожура семени (гладкая / морщинистая ) и т.д.

При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами. Он назвал этот признак доминантным.

Так экзаменационная работа требует от учащихся умения правильно оформлять записи при решении генетических задач, то мы покажем пример такой записи.

Мейоз свойствен процессам созревания зародышевых клеток, он осуществляет редукцию числа хромосом. Кроме того, во время мейоза происходит перекрест, ведущий к обмену участками гомологичных хромосом.

Относительное положение мейоза в жизненном цикле организмов может быть разным в зависимости от их положения в эволюционной лестнице жизни. Различают три типа мейоза.

Очевидно, гаметы несут материальные наследственные факторы – гены, которые определяют развитие того или иного признака. Обозначим ген, определяющий доминантный признак, какой-либо заглавной буквой алфавита (например, А), а соответствующий ему рецессивный ген – малой буквой (соответственно а).

Обозначим соединение гамет, несущих гены А и а, знаком умножения: А*а=Аа. Как видно, возникающая в результате гетерозиготная форма (F 1 ) имеет оба гена, как доминантный, так и рецессивный – Аа.

Менделем, его научные изыскания. Закономерности наследования признаков. Три закона Менделя, основанные на анализе результатов моногибридного скрещивания.

Основные положения теории наследственности Г. Менделя. Кодоминирование и неполное доминирование. Закон единообразия гибридов первого поколения. Закон расщепления признаков.

Закон независимого наследования признаков. Хромосомная теория наследственности. Заинтересованность Менделя процессом гибридизации растений, разными типами гибридных потомков и их статическими соотношениями.

Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга.

Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Чтобы одновременно проанализировать наследование нескольких признаков, необходимо изучить наследование каждой пары признаков в отдельности, не обращая внимания на другие пары, а затем сопоставить и объединить все наблюдения.

Именно так и поступил Мендель. Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным.

Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам — три — и полигетерозиготными соответственно.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной хромосоме или в разных. Независимое наследование (третий закон Менделя).

Это скрещивание, при котором родительские формы различаются по многим парам признаков.

Если ведется скрещивание форм, различающихся по N парам признаков, то число типов гамет = 2N, число комбинаций между гаметами в F1 = 4N, число генотипов в F2 = 3N, число фенотипов в F2 = 2N.

При полигибридном скрещивании применимы законы Менделя: единообразие F1, а в F2 идет расщепление 3:1 по каждой паре признаков независимо (если соблюдены условия осуществления Менделеевских законов).

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков.

Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции;

так как является источником комбинативной наследственности. Дигибриды – гибриды, полученные от скрещивания организмов, отличающихся одновременно двумя парами альтернативных признаков.

[“Вопрос рассмотрим на примере работ Г. Менделя…”]. Для первого скрещивания исп. гомозиготы, отлич. по двум парам признаков (форма и окраска семян). В F1 – единообразие фенотипов – все гетерозиготы (для проверки гетерозиготности этих растений примен-ся анализирующее скрещивание — с дигомозиготой).

Растения в F1 с равной вероятностью дают гаметы AB, Ab, aB и ab =

Понравилась статья? Поделиться с друзьями:
Медицинский взгляд на еду
Adblock
detector